Accueil > Applications > Alimentation de secours et catastrophe naturelle 

Production Energétique & Services

Alimentation de secours et catastrophe naturelle 

Juillet 2025, Taïwan est frappée par le typhon Danas, la tempête la plus puissante à toucher la région depuis 67 ans. Ce typhon a dévasté la région centrale de Chiayi, provoquant des vents violents, des pluies torrentielles, des inondations majeures et des destructions d’infrastructures. Plus de 500 000 foyers ont été privés d’électricité, plusieurs centaines de personnes ont été blessées, et des régions entières sont restées sans courant pendant plusieurs jours.

Une réponse énergétique rapide et durable 

Face à cette situation d’urgence énergétique, EODev, via son distributeur local Nexcellent Energy Inc., a déployé un générateur à hydrogène GEH₂® monté sur camion pour répondre rapidement aux besoins d’alimentation électrique dans une zone particulièrement touchée de Taïwan, le district de Qigu à Tainan.  

30 foyers alimentés 

Cette installation de secours mobile a permis d’offrir un soutien vital pendant une semaine aux habitants sur place, dans l’attente des réparations nécessaires pour rétablir le réseau électrique assurées par Taipower, la compagnie d’électricité nationale. Le GEH2® a permis d’alimenter les foyers et les appareils électriques, donnant la possibilté aux riverains de répondre à leurs besoins essentiels.

Premier déploiement de secours 

Il s’agit de la toute première utilisation de notre générateur GEH₂® dans un contexte d’intervention d’urgence liée à une catastrophe naturelle. Ce cas concret, illustre la pertinence de solutions énergétiques mobiles, propres et silencieuses d’autant plus dans un contexte de catastrophes climatiques de plus en plus fréquentes. Ce déploiement à Taïwan démontre que l’adoption de technologies à hydrogène sur le terrain est possible et que l’innovation peut contribuer efficacement à la gestion des urgences humanitaires tout en respectant les enjeux environnementaux.

Une solution saluée par Taïwan

La réactivité de Nexcellent Energy et l’efficacité du GEH2® ont été vivement saluées par les habitants et par le Président de Taïwan lui-même, qui s’est rendu sur place pour féliciter l’équipe pour son intervention exemplaire et efficace à travers le déploiement de notre générateur à hydrogène. 

À mesure que les événements climatiques extrêmes, comme les typhons et les tempêtes, deviendront plus fréquents et intenses, la demande de systèmes énergétiques résilients, durables et décarbonés pour le secours ou des applications hors réseau n’aura de cesse de croître. Avec nos partenaires et distributeurs nous poursuivrons nos efforts pour populariser nos solutions de production et de stockage d’énergie décarbonées à travers le monde afin de contribuer efficacement à la transition énergétique et lutter contre le changement climatique. 

Vous avez une question,
nous avons la réponse.

A quoi sert l’hydrogène ?

Jusqu’à présent principalement utilisé comme matière première pour la chimie et le raffinage pétrolier, l’hydrogène est de plus en plus identifié comme vecteur énergétique d’avenir en raison de ses facultés de stockage et du fait que son utilisation n’émet pas de CO2. Il se présente aujourd’hui comme un substitut possible aux hydrocarbures, et un moyen efficace pour faciliter l’intégration des énergies renouvelables. Si les 75 millions de tonnes d’hydrogène produites par an dans le monde sont pour l’instant issues à plus de 95% d’énergies fossiles, les nouvelles technologies permettant de produire de l’hydrogène décarboné continuent à gagner en maturité. La production d’hydrogène à partir de biomasse ou par électrolyse est soutenue par l’émergence d’une nouvelle demande pour de « l’hydrogène vert ».

Dans l’industrie, le recours à un hydrogène décarboné devrait intervenir dans les procédés utilisant traditionnellement de l’hydrogène fossile comme la production d’ammoniac et le raffinage du pétrole, mais également dans de nouveaux procédés en substitut d’autres matières fossiles. Les projets d’expérimentation de nouvelles voies d’intégration d’hydrogène décarboné ou de valorisation d’hydrogène fatal dans les chaînes de production se sont ainsi multipliés ces dernières années, et la loi énergie climat 2019 fixe un objectif de 20 à 40% d’hydrogène bas carbone et renouvelable à l’horizon 2030.

Dans les transports, les véhicules hydrogène représentent une alternative de choix pour répondre aux défis de la mobilité durable. Ils ne rejettent que de l’eau, disposent d’une autonomie équivalente à un véhicule à combustion et se rechargent rapidement. En plus de la multiplication du nombre de modèles de voitures hydrogène, l’année 2019 aura été marquée par l’accélération de la dynamique du ferroviaire hydrogène avec la multiplication des commandes du train développé par Alstom, et par l’intérêt grandissant des collectivités locales pour le déploiement de lignes de bus à hydrogène.

Dans le cadre d’un mix électrique futur toujours plus renouvelable, le vecteur hydrogène énergie permet de pallier l’intermittence des énergies renouvelables en stockant, sous forme gazeuse, l’électricité excédentaire produite lors des périodes de forte production et de faible consommation (Power to Gas). Le stockage d’énergie rendu possible par l’hydrogène permet aussi d’étendre les perspectives de l’autoconsommation à l’échelle d’une maison, d’un bâtiment ou d’un village.

Avantages de l’hydrogène sur une solution « tout batteries » ?

Alors que les batteries fournissent une énergie immédiate court terme, l’hydrogène agit en prolongateur d’autonomie sur le long terme. L’exemple du bateau Energy Observer illustre grandeur nature l’immense avantage massique de l’hydrogène en comparaison des batteries. Alors que le parc batteries pèse 1400kg pour 112 kWh, le stockage hydrogène et la pile à combustible pèsent au total 1700kg pour 1000 kWh. Rapporté au kilogramme, 1kWh pèse donc 12,5kg lorsqu’il est stocké dans des batteries, et seulement 1,7kg lorsqu’il est stocké sous forme d’hydrogène. En d’autres termes, cela signifie qu’à poids égal, le stockage hydrogène contient 7,35 fois plus d’énergie que le stockage batterie, soit un atout considérable pour la mobilité, qu’elle soit maritime, terrestre, ou même aérienne. Pour plus de détails, voir aussi l’exemple d’application développée à bord des Hynova 40, et l’article sur l’hybridation pile à combustible – batteries à retrouver ICI.

Combien d’énergie contient l’hydrogène ?

En terme d’énergie « contenue » : 1 kg d’ H2 = 11 Nm3 = 13,6L d’ H2 liquide = 23,3L d’H2 à 700 bars et contient 33 kWh d’énergie produit par 52 kWh d’électricité (en pratique industrielle, le rendement est de 63% par électrolyse avant compression ou liquéfaction). Un litre d’ H2 liquide pèse 73,5 g et contient 2,4 kWh donc 4 litres Hliquide = 9,6 kWh. Un litre d’ H2 à 700 b pèse 43g et contient 1,4 kWh donc 7 litres H2 à 700 b = 9,8 kWh On en déduit en terme d’énergie (approximativement) : 1 litre essence = 9 kWh = 3000 l d’ H2 (à Patm) = 7 litres H2 / 700 b = 4 litres H2 liquide / -253°C.

Comment est produit l’hydrogène utilisé couramment ?

À l’heure actuelle, 95% de l’hydrogène produit en France est d’origine fossile, comme près de 99% de celui produit dans le reste du monde. Cet hydrogène est obtenu le plus souvent à partir du procédé de vaporeformage du méthane, le composant principal du gaz naturel. Chaque kg d’hydrogène produit ainsi émet 12 kg de CO2, et son prix de revient varie de 1 à 2.5€ par kg. Près de 45% de la production mondiale est issue de cette technique.

Environ 25% de la production d’hydrogène provient de « co-production » de produits raffinés issus d’hydrocarbures, qu’on appelle alors hydrogène « fatal ». Son coût de production est variable puisqu’il s’agit ici d’un « résidu » de production d’autres éléments chimiques, et donc son empreinte carbone l’est aussi.

Une troisième filière utilise le charbon, brûlé à très haute température (1200 à 1500°C) pour séparer l’hydrogène — qu’on devrait appeler dihydrogène H2 — du CO2, sous forme de gaz. Cette production, environ 30% du total, permet d’obtenir un hydrogène dont le prix de revient au kg oscille entre 1,5 et 3€ le kg, mais libère 19kg de CO2 par kg d’hydrogène.

Il s’agit là de modèles industriels qui fabriquent de l’hydrogène « gris ». L’hydrogène « vert », qui ne contribue qu’à moins de 1% de la production mondiale (environ 5% en France), provient de l’utilisation d’énergies décarbonées ou renouvelables (solaire, éolien…). L’électrolyse de l’eau, qui permet une empreinte carbone nulle ne représentait en 2019 que 0,1% de la production mondiale d’hydrogène, du fait d’un coût relativement prohibitif en comparaison des autres modes de production, un kg d’hydrogène revenant entre 3 et 12€ pour sa seule production (hors coût de transport, de distribution…).

Pour permettre le déploiement à grande échelle d’un « hydrogène vert », l’électrolyse à partir d’une source d’énergie renouvelable fait partie des voies d’avenir de la filière, et c’est clairement l’une des voies tracées par le plan de relance de 2020, pour faire de la France et de l’Europe des champions de la production d’hydrogène « vert ».

Est-ce qu’une pile à combustible est comme une batterie ?

Une pile à combustible est faite de métal, de graphite, d’électrodes et son processus est effectivement chimique. Le système REXH2® conçu par EODev s’appuie sur la technologie de pile à combustible Toyota. Le système de pile à combustible Toyota a déjà prouvé ses avantages pendant de nombreuses années dans la Mirai, mais plus récemment aussi dans d’autres applications telles que les bus et les camions. Son utilisation pour le transport maritime est à nouveau un pas de plus vers le développement de la société de l’hydrogène.

Contactez-nous